Repeated string match [Rabin-Karp Algorithm (rolling hash)]¶
Time: O(N + M); Space: O(1); easy
Given two strings A and B, find the minimum number of times A has to be repeated such that B is a substring of it. If no such solution, return -1.
Example 1:
Input: A = “abcd”, B = “cdabcdab”
Output: 3
Explanation:
Because by repeating A three times (“abcdabcdabcd”), B is a substring of it;
and B is not a substring of A repeated two times (“abcdabcd”).
Example 2:
Input: A = “a”, B = “b”
Output: -1
Constraints:
The length of A and B will be between 1 and 10000.
[1]:
class Solution1(object):
"""
Rabin-Karp Algorithm (rolling hash)
"""
def repeatedStringMatch(self, A, B):
"""
:type A: str
:type B: str
:rtype: int
"""
def check(index):
return all(A[(i+index) % len(A)] == c
for i, c in enumerate(B))
M, p = 10**9+7, 113
p_inv = pow(p, M-2, M)
q = (len(B)+len(A)-1) // len(A)
b_hash, power = 0, 1
for c in B:
b_hash += power * ord(c)
b_hash %= M
power = (power*p) % M
a_hash, power = 0, 1
for i in range(len(B)):
a_hash += power * ord(A[i%len(A)])
a_hash %= M
power = (power*p) % M
if a_hash == b_hash and check(0): return q
power = (power*p_inv) % M
for i in range(len(B), (q+1)*len(A)):
a_hash = (a_hash-ord(A[(i-len(B))%len(A)])) * p_inv
a_hash += power * ord(A[i%len(A)])
a_hash %= M
if a_hash == b_hash and check(i-len(B)+1):
return q if i < q*len(A) else q+1
return -1
[2]:
s = Solution1()
A = "abcd"
B = "cdabcdab"
assert s.repeatedStringMatch(A, B) == 3
A = "a"
B = "b"
assert s.repeatedStringMatch(A, B) == -1